智能手机被广大诟病的一个原因就是电量不够用,虽然近几年的快充技术在一定程度上解决了手机充电困扰,但对于喜欢在旅途中享受手机的用户而言,充电器技术仍需创新,太阳能充电器就是一个好的解决思路。
太阳能充电器是将太阳能转换为电能以后存储在蓄电池里面,蓄电池可以为任何形式的蓄电装置,一般由太阳能光电池,蓄电池,调压元件三个部分组成。蓄电池主要为铅酸电池、锂电池、镍氢电池,负载可以是手机等数码产品,负载是多样性的。
目前太阳能充电器的开发难点有哪些,快包对一位硬件工程师进行了电话采访,他认为当前太阳能充电器面临两大难点:在太阳能转化为电能中降低成本和提高光电转化效率是太阳能发电系统中,最重要的两个技术问题。其实提高光电转化效率的最终目的也是为了降低系统成本。使用高效率的光伏电池,可以减少光伏电池的使用数量,似乎就降低了系统的成本。但是,就现在的技术来说,高效率的光伏电池(如单晶硅光伏电池)制造难度比较大,价格也就比较昂贵,用于系统中,其实未必就能降低成本。
本文中,我们将对开发太阳能充电解决方案过程中一些重要的考虑因素进行说明。需要考虑这些因素的主要原因是:随着光照环境不同,电压和电流也随之变化,那么太阳能电池板就会成为一个高输出阻抗电源。而墙上电源适配器或者USB电源均为低输出阻抗电源,具有预先规定好的输出电压和电流。我们要讨论的太阳能充电解决方案中需要重点关注的因素包括:最大功率点跟踪(MPPT)、反向漏电保护、充电终止方法技巧以及太阳能板崩溃保护等。
最大功率点(MPP)是能够获得最大功率的太阳能电池工作区域,图中的曲线图表明了该区域。该曲线图显示了典型输出电流与输出功率同MPP双节太阳能电池板电压曲线的对比关系。曲线上的MPP很明显,因为它是对应于太阳能电池板最大功率输出的电压和电流。MPP与环境温度和光线有关,因此会随时间而变化。这表明,利用太阳能电源的充电器必须具有相应的电路,以随环境条件变化不断跟踪MPP。MPPT方案种类繁多,包括简单的开环技术(电池板电压维持在固定开电路电压)和复杂的微控制器类技术(测量输入和输出功率,然后正确调节电池板电压)。
反向漏电是电池中存储的电荷丢失并返回至电源的一种现象,电池电压高于电源时出现反向漏电现象,出现这种现象时,电源便成为电池的负载,不再对电池充电。使用墙上电源适配器或者USB电源时不会出现这种状态,因为这两种电源的电压输出始终保持在锂离子电源电压之上。使用太阳能电池板时,太阳能板的电压会在光照不足的情况下降低至电池电压以下。当开关S1关闭时,电源从电池断开,电池无电流。使用太阳能电池板时,如果使用相同的布局,则如果太阳能板电压降至电池电压以下时开关体二极管开启,解决这种问题的一种常用方法是使用背靠背式开关。
锂离子电池充电要求对电池实施精确的电流和电压控制,以确保电池电量充满,防止缩短电池使用寿命,并防止在充电期间出现危险状态,锂离子电池充电的常见过程可分为如下三个阶段:预稳压、恒定电流充电和恒定电压充电。在预稳压阶段,利用0.1C恒定电流(通常情况)对电池充电,以使电池电压缓慢上升至2.5V左右。该阶段仅用于深度放电的电池。一旦电池电压上升至~2.5V以上,则使用恒定电流充电。在恒定电流充电阶段,利用1C恒定电流(通常情况)对电池充电,直到电池电压达到~4.2V。一旦电池电压达到~4.2V,则使用4.2V恒定电压对电池充电。在这一阶段,需对进入电池的电流情况进行监控。当电池电流降至0.1C时,充电终止。在恒定电压充电阶段,进入电池的电流会减少,原因是电池充满时电池阻抗增加。一旦电流减少至0.1C以下,充电源必须完全从电源断开。如果未彻底断开,会出现金属锂电镀现象,让电池变得不稳定,从而出现危险状态。我们必须根据进入电源的电流情况来终止锂离子电池充电,以保证电池刚好充满至其最大电量。
使用太阳能充电的充电器必须遵循上述充电过程。问题大多会出现在对电池电流进行监控的恒定电压充电阶段。进入到电池的电流可能会减少,但不是因为电池电量的增加,而是因为光照环境变化带来太阳能板输出的降低。因此,电池可能永远也不会充满至其最大电量,而且太阳能板可能会一直连接电池。要想解决这个问题,我们可以使用一个长时恒定计时器。计时结束时,太阳能板便从充电器断开,而不用考虑电池电量情况,这样便可以防止电池损坏。
为了保护蓄电池、防止过充电,在绝大部分的太阳能发电系统中均包含了充电控制器,其最基本功能为当蓄电池饱满时切断充电电流,由于各种蓄电池的充电特性不同,所以,应根据电池类型选择使用的充电控制器。
最近,在快包平台上就有一个名为太阳能充电控制器开发的任务,其中它的太阳能电池板结构与电路设计已经完成,需求方将控制器模块外包,他要求:
4、输出短路时,蜂鸣器长鸣报警,所有指示灯熄灭,12V和5V输出切断,系统每隔3秒自动检测短路故障是否已消除,一旦检测到短路已消除之后恢复输出;
6、电池欠压关断,蜂鸣器报警3s快响(频率为4Hz),然后切断12V和5V输出;
9、预留2个5V USB手机充电接口,两个USB口的最大输出电流要达到31、12、24、36、48V电池时60A。
申请这个任务的开发者有十多年的硬件开发经验,根据服务商多年的经验介绍,快包总结了这个任务开发的四大关键点:
1、直充保护点电压:直充也叫急充,属于快速充电,一般都是在蓄电池电压较低的时候用大电流和相对高电压对蓄电池充电,但是,有个控制点,也叫保护点,就是上表中的数值,当充电时蓄电池端电压高于这些保护值时,应停止直充。直充保护点电压一般也是“过充保护点”电压,充电时蓄电池端电压不能高于这个保护点,否则会造成过充电,对蓄电池是有损害的。
2、均充控制点电压:直充结束后,蓄电池一般会被充放电控制器静置一段时间,让其电压自然下落,当下落到“恢复电压”值时,会进入均充状态。为什么要设计均充?就是当直充完毕之后,可能会有个别电池“落后”(端电压相对偏低),为了将这些个别分子拉回来,使所有的电池端电压具有均匀一致性,所以就要以高电压配以适中的电流再充那么一小会,可见所谓均充,也就是“均衡充电”。均充时间不宜过长,一般为几分钟~十几分钟,时间设定太长反而有害。对配备一块两块蓄电池的小型系统而言,均充意义不大。所以,路灯控制器一般不设均充,只有两个阶段。
3、浮充控制点电压:一般是均充完毕后,蓄电池也被静置一段时间,使其端电压自然下落,当下落至“维护电压”点时,就进入浮充状态,目前均采用PWM(既脉宽调制)方式,类似于“涓流充电”(即小电流充电),电池电压一低就充上一点,一低就充上一点,一股一股地来,以免电池温度持续升高,这对蓄电池来说是很有好处的,因为电池内部温度对充放电的影响很大。其实PWM方式主要是为了稳定蓄电池端电压而设计的,通过调节脉冲宽度来减小蓄电池充电电流。这是非常科学的充电管理制度。具体来说就是在充电后期、蓄电池的剩余电容量(SOC)80%时,就必须减小充电电流,以防止因过充电而过多释气(氧气、氢气和酸气)。
4、过放保护终止电压:这比较好理解。 顺盈线路测速!蓄电池放电不能低于这个值,这是国标的规定。蓄电池厂家虽然也有自己的保护参数(企标或行标),但最终还是要向国标靠拢的。需要注意的是,为了安全起见,一般将12V电池过放保护点电压人为加上0.3v作为温度补偿或控制电路的零点漂移校正,这样12V电池的过放保护点电压即为:11.10v,那么24V系统的过放保护点电压就为22.20V。目前很多生产充放电控制器的厂家都采用22.2v(24v系统)标准。
快包上类似于此类的开发需求还有很多,有类似经验的工程师可前往申请,先到先得,赚钱机会不等人。
描述:开发太阳能控制器的软件,与我们的硬件工程师合作,硬件部分我们可以自己完成,具体细节电话详谈,价格可商议。
描述:太阳能路灯控制器,恒流一体,太阳能输入电流5-8A,输出电流4A MAX:升压,转换效率大于90%。软件为无极调光降功率+分段调光,当电池电压低于某一个电压点固定小电流输出(超节能模式)返回搜狐,查看更多